Benjamin Walter
math210
Assignment Truss_System_Rowsp_and_Nullsp due 12/10/2021 at 02:06pm EET
Problem 1. (1 point) METUNCC/Applied_Math/trusses/truss-2node-4bar.pg
Consider the following truss system.

All bars are either vertical, horizontal, or at 45° from horizontal.

Enter the elongation matrix $\left(A=B^{\mathrm{T}}\right)$:
(in the form "node 1 horiz", "node 1 vert", "node 2 horiz" etc.)

$$
A=\left[\begin{array}{llll}
- & - & - & - \\
- & - & - & - \\
- & - & - & - \\
- & - & - & -
\end{array}\right]
$$

(Remember that webwork uses radians for computations.)

This truss system should be stable. The matrix is square, which is good. However, you should be able to verify that A has a pivot in each column of its LU decomposition. This means that it has no nullspace.

Problem 2. (1 point) METUNCC/Applied_Math/trusses/truss-3node-4bar.pg
Consider the following truss system.

All bars are vertical or horizontal.

Enter the elongation matrix $\left(A=B^{\mathrm{T}}\right)$:
(in the form "node 1: horiz", "node 1: vert", "node 2: horiz" etc.)

$$
A=\left[\begin{array}{llllll}
- & - & - & - & - & - \\
- & - & - & - & - & - \\
- & - & - & - & - & - \\
- & - & - & - & - & -
\end{array}\right]
$$

Compute a basis for the nullspace of A.

$$
\text { Basis }=\left\{\left[\begin{array}{l}
- \\
- \\
- \\
- \\
-
\end{array}\right],\left[\begin{array}{l}
- \\
- \\
- \\
- \\
-
\end{array}\right]\right\}
$$

Match the following force vectors f_{m} with the motions they would induce and state whether they are in the nullspace of A

| $-100-$ |
| :---: | :---: |

$\left[\begin{array}{c}0 \\ 0 \\ 0 \\ -1 \\ 0 \\ -1\end{array}\right]$

Motion: [?/A/B/C/D]In nullspace? [?/Yes/No]

(Click on a figure to enlarge it)

Problem 3. (1 point) METUNCC/Applied_Math/trusses/truss-3node-4bar_diamond.pg
Consider the following truss system.

All angles are as marked.

Enter the elongation matrix $\left(A=B^{\mathrm{T}}\right)$:
(in the form "node 1 horiz", "node 1 vert","node 2 horiz" etc.)

$$
A=\left[\begin{array}{llllll}
- & - & - & - & - & - \\
- & - & - & - & - & - \\
- & - & - & - & - & - \\
- & - & - & - & - & -
\end{array}\right]
$$

(Remember that webwork uses radians for computations.)

Compute a basis for the nullspace of A.

$$
\text { Basis }=\left\{\left[\begin{array}{c}
- \\
- \\
- \\
-
\end{array}\right],\left[\begin{array}{l}
- \\
- \\
- \\
- \\
-
\end{array}\right]\right\}
$$

Match the following force vectors f_{m} the motions they would induce and state whether they are in the nullspace of A
$\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right] \quad$ Motion: [?/A/B/C/D]In nullspace? [?/Yes/No] $\left[\begin{array}{c}0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1\end{array}\right] \quad$ Motion: [?/A/B/C/D]In nullspace? [?/Yes/No]

A

B

C

D

(Click on a figure to enlarge it)

> Problem 4. (1 point) METUNCC/Linear_Algebra/fund_spaces.pg
> The matrix $\left[\begin{array}{ccccc}0 & 2 & 2 & 1 & 3 \\ 0 & 4 & 4 & 0 & 8 \\ 0 & -4 & -4 & 4 & -12\end{array}\right]$ reduces to $\left[\begin{array}{ccccc}0 & 2 & 2 & 1 & 3 \\ 0 & 0 & 0 & -2 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.

Give bases for the following.

$$
\begin{gathered}
\text { Row Space }=\operatorname{Span}\left\{\left[--\quad\left[-\quad\left[\begin{array}{lll}
& - & -\quad-]\}
\end{array}\right.\right.\right.\right. \\
\text { Column Space }=\operatorname{Span}\left\{\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right],\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]\right\} \\
\\
\text { Nullspace }=\operatorname{Span}\left\{\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right],\left[\begin{array}{l}
- \\
- \\
- \\
-
\end{array}\right],\left[\begin{array}{l}
- \\
- \\
- \\
-
\end{array}\right]\right\}
\end{gathered}
$$

